Best Practices for physical hazard closure at underground mines

Mine Design, Operations & Closure Conference 2010 Fairmont Hot Springs, MT

Reclamation Issues

• Air, water, soil Acid mine drainad **Tails and s** Physical - Buil - Pits and highwalls - Mine entries - Subsidence features

Physical hazard issues

- Unstable - Contaminated - Could hide other hazards Shafts, adits, raises Highwalls and open pits

Mill buildings and headframes

tersection caves

Subside

Crack

Stopes

Surface mine features & hazards

- Highwalls
 - Unstable
 - Sediment and leaching
- Pits
 - Falling
 - Drowning
 - Leaching

Drowning, ATV accidents and falling are the top three causes of fatalities at AML sites (geology.com)

Head frames and Buildings

ANDE AN

Collapsing
Falling
Sumps, service tunnels
Contaminants and chemicals

But often considered historical

Mine openings

Shafts

- Vertical or near vertical
 - May be in rock or lined or timbered in overburden

Adits

- Horizontal to slight incline
- Hard rock term
- Often dry

Raises

Used for ventilation
For closure, treat as a shaft

Portals

- Primarily coal
- Could be inclined
- Often produce water

Mine opening hazards

 Falling Gases Entrapment Falls of ground • Fauna Endanger rescue p Conduits for water

vpes of closure Full closure, permanent, no ingress Backfill, concrete, foam, steel, grouting Permanent with secure ingress **Permanent with ventilation** Culvert with or without gating **Full closure with animal ingress Culvert** with fill and gating

Federal Agencies - BLM, OSM, USTS, NPS - USF&W, NRCS, BOR, USACE (limited) State/Provincial Agencies - AML, DNR/DEP Mining Companies

Who does this work?

Contractors

Closure methods and resources

fts and raises (and most stopes)

- BlastingConcrete
- Foam – Steel
- Cable nets
- Cupolas
- Culverts
- Tires

Closure methods and resources

Adits/portals

- Fences
- Backfill
- Blasting
- Block walls
- Concrete
- Stacked rock
- Cable nets
- Full gates
- Foam
- Culverts
- Tires

Closure methods and resources

- Backfill

- Fences

- Concrete

Subsidence features

- Grout
- Bentonite
- Foam

Quickly, PUF closures

- Polyurethane foam (PUF) two-part spray or pour liquid that expands 20-30x and hardens
 Used since early 1980s, easy to transport and install
- Shafts, adits, culvert gates, subsidence
 Strong, light, impervious
- Does need protection from fire, sunlight and vandalism

Resources **BCI and ACCA** State agencies (CA, CO, NM, UT) OSM **USDA NRCS** Foam Concepts! Engineering companies (not at all exhaustive) - Pioneer URS PHC ERM Hart Crowse Potesta **Schnabel**

So, in MY opinionwhat are "best practices" Best practices are methods that core the hazard safely, quickly and permanently and require very little maintenance.

They should be immune to e deterioration.

They should minimize surface water infiltration and be sympathetic to the cultural and aesthetic aspects of the site.

andalism and

What should be avoided

Things that are rarely adequate or cost effective **Blasting** - Fencing - Block walls/stacked rock - Pre-cast decks. - Steel doors - Backfill

- - - des user

ERM photo

Fence around shaft

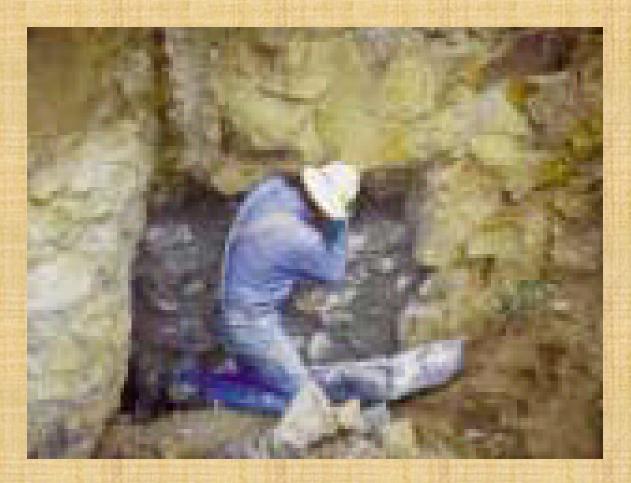
Off some website

Previously backfilled shaft FCLLC photo

Pre-cast bridge decks

CO DRMS website photo

What works well


- Cast in place concrete
- Foam
- Steel mesh and cable nets
- Combinations of foam and
 - Concrete
 - Backfill
 Culverts
 - Tires

Adit prior to closing with foam FCLLC photo

Closed and foam covered with rock FCLLC photo

Laid rock wall CO DRMS website image

Open shaft FCLLC photo

Shaft being filled with foam FCLLC photo

Water filled shaft FCLLC photo

Foam placed directly on water

Plug was later covered with rock FCLLC Photo

Historic shaft house over timbered shaft

Stabilized with foam and concrete without moving the structure PHC photo

Shaft timbers exposed and cleaned with water hose PHC photo

Rebar over foam plug PHC photo

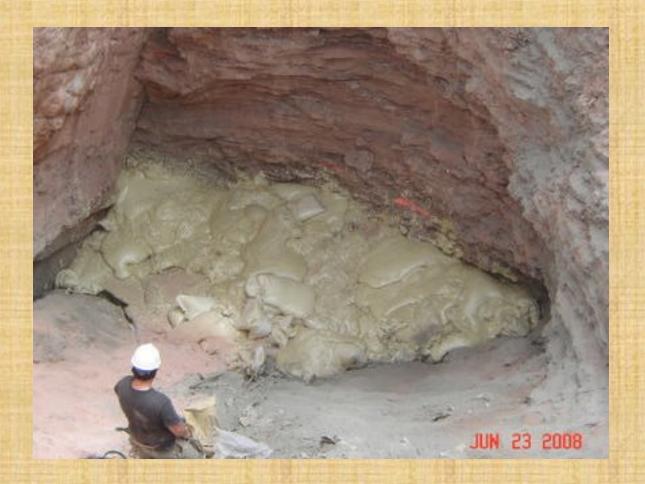
Concrete pad prior to backfill with soil PHC photo

Subsidence at inby end of box portal FCLLC photo

Surface manifestation of same feature OSM photo

Foam used to close slope, support backfill OSM Photo

Final grading and seeding OSM Photo

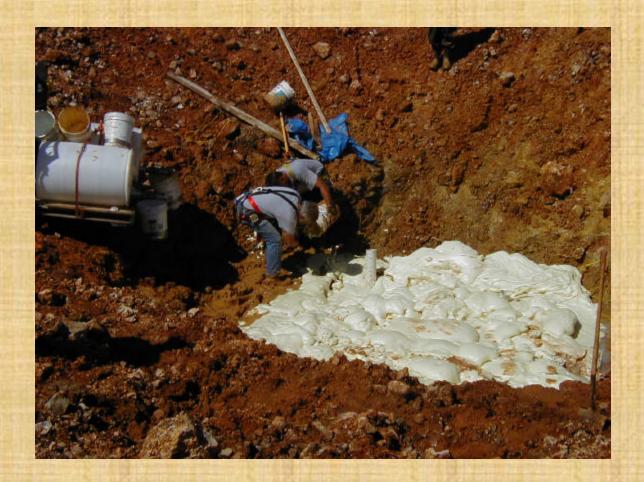


Foam under a garage

Foam will prevent further erosion, keep fill from migrating and support corner of structure Alabama AML photo

Slot raise opening into a large stope FCLLC Photo

Foam wedge or "cork" placed in throat of raise AIS photo



Fill placed over foam AIS photo

Shaft with debris plug

Could be closed in a similar manner to previous shaft. Foam will not displace debris plug, but will support concrete and reduce erosion. FCLLC photo

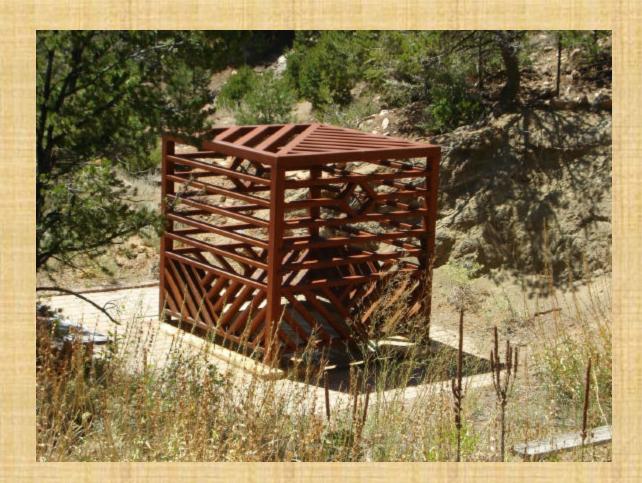
Foam to underform concrete FCLLC photo

Rebar mat over foam plug

MO AML Photo

Concrete monolithic plug over foam

MO AML Photo


Shaft and headframe with concrete pad

Concrete plug in place

Similar closure, blends in well with landscape

Bat cupola

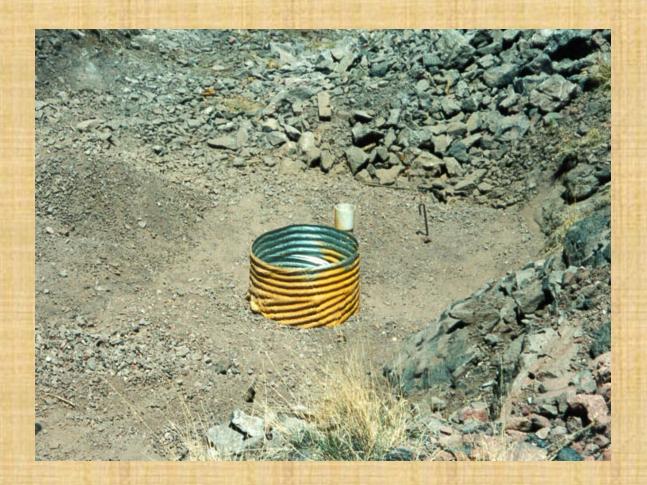
Culvert foamed in shaft, cupola placed on pad around shaft collar NM AML website photo

Shaft with culvert and grating

Another shaft with culvert and gate

Full gate in adit NM AML website photo

Full gate in adit


Note removable bars NM AML website photo

Gate in concrete pipe FCLLC photo

Gate in HPDE culvert USFS photo

Culvert foamed in shaft with drain pipe

Gate at grade NM AML website photo

Multiple openings along scissor fault

Might be suited to cable net, steel mesh or tires FCLLC Photo

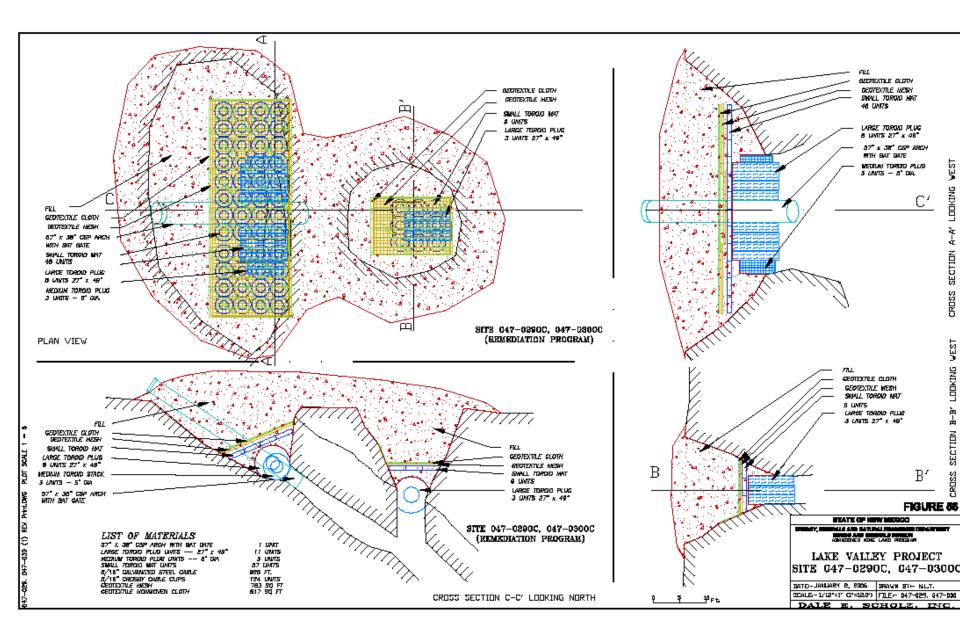
Cable net with bat windows

More cable net

Steel mesh over shaft with observation bridge

Steel mesh over stope

Culvert gate in shaft with rock backfill


Shafts with all waste rock encapsulated in foam

Iona Construction photo

Culvert and gate in an inclined stope opening

Culvert provides ventilation into a tourist mine FCLLC Photo

Pouring foam directly in subsidence crack FCLLC photo

Subsidence cracks over coal mine, cleaned out and foamed WV DEQ photo

Intersection cave subsidence OSM Photo

Small chimney type subsidence AL AML Photo

Foam prior to backfill

AL AML Photo

- On large sites, physical hazards can be significant, but may get lost in the overall scope of the project
- There are a number of effective ways to mitigate these hazards

Conclusions

- There are a number of agencies and firms with this type of experience
 - Consider vandalism and habitat in any design

Thank you

Dennis Dunham Foam Concepts, LLC 800-556-9641

ddunham@foamconceptsllc.com

Thanks to many who over the years have perfected these techniques and allowed me to share them with you.